login
A055755
4n^2+1, 2n^2+1, 2n^2-1 are all prime.
1
3, 42, 45, 102, 132, 153, 237, 297, 375, 468, 570, 990, 2085, 2478, 2712, 3240, 4743, 5382, 5517, 6828, 7962, 8970, 8982, 9033, 9570, 9612, 9747, 9813, 10692, 12363, 12453, 12468, 12750, 13902, 14763, 14925, 15750, 16365, 17118, 17688, 19527
OFFSET
1,1
LINKS
EXAMPLE
42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.
MAPLE
with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d, `, n) fi: od:
MATHEMATICA
a={}; Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a, n]], {n, 10000}]; a (* Peter J. C. Moses, Apr 02 2013 *)
CROSSREFS
Cf. A001912.
Sequence in context: A228456 A238717 A057013 * A249046 A237661 A116006
KEYWORD
easy,nonn
AUTHOR
Harvey P. Dale, Jul 12 2000
EXTENSIONS
More terms from James A. Sellers, Jul 13 2000
STATUS
approved