This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055279 Number of rooted trees with n nodes and 4 leaves. 1
 1, 4, 14, 39, 97, 212, 429, 804, 1427, 2406, 3900, 6094, 9245, 13645, 19682, 27791, 38530, 52516, 70521, 93390, 122157, 157945, 202104, 256090, 321628, 400567, 495070, 607445, 740362, 896657, 1079581, 1292574, 1539546, 1824621, 2152452, 2527932, 2956546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,2 LINKS FORMULA G.f.: x^5 * (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)). - Michael Somos, Nov 02 2014 a(5-n) = A055365(n). for all n in Z. - Michael Somos, Nov 02 2014 0 = -30 + a(n) - 2*a(n+1) - a(n+2) + 3*a(n+3) + a(n+5) - 2*a(n+6) - 2*a(n+7) + a(n+8) + 3*a(n+10) - a(n+11) - 2*a(n+12) + a(n+13) for all n in Z. - Michael Somos, Nov 02 2014 a(n) ~ n^6 / 1152 as n -> infinity. - Michael Somos, Nov 02 2014 EXAMPLE G.f. = x^5 + 4*x^6 + 14*x^7 + 39*x^8 + 97*x^9 + 212*x^10 + 429*x^11 + ... PROG (PARI) {a(n) = if( n<5, n = -1-n; polcoeff( (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 3*x^6 + x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n), n = n-5; polcoeff( (1 + x + 3*x^2 + 5*x^3 + 7*x^4 + 5*x^5 + 5*x^6 + 2*x^7 + x^8) / ((1 - x)^3 * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Nov 02 2014 */ CROSSREFS Column 4 of A055277. Cf. A055365. Sequence in context: A130423 A266423 A055484 * A074083 A182819 A144141 Adjacent sequences:  A055276 A055277 A055278 * A055280 A055281 A055282 KEYWORD nonn AUTHOR Christian G. Bower, May 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 02:54 EDT 2019. Contains 328244 sequences. (Running on oeis4.)