login
A055164
(n - phi(n)) | sigma(n) for composite n not congruent to 2 (mod 4).
2
99, 168, 187, 493, 637, 780, 943, 1273, 1537, 1836, 2183, 2225, 2976, 3103, 3589, 4183, 5353, 5928, 6201, 6468, 6667, 8881, 9553, 9727, 13393, 13888, 14453, 15397, 17587, 19897, 24253, 24883, 30883, 33667, 36259, 36853, 37523, 43657, 45901
OFFSET
1,1
COMMENTS
Let p be an odd prime. If d > p+1 is a divisor of p^2 - p - 2 such that d+1-p is prime, then p*(d+1-p) is in the sequence. - Robert Israel, May 03 2019
LINKS
MAPLE
filter:= proc(n) uses numtheory;
if isprime(n) then return false fi;
type(sigma(n)/(n-phi(n)), integer)
end proc:
select(filter, [seq(seq(4*i+j, j=[0, 1, 3]), i=1..20000)]); # Robert Israel, May 03 2019
MATHEMATICA
Do[ If[ !PrimeQ[ n ], If[ Mod[ n, 4 ]! = 0, If[ Mod[ DivisorSigma[ 1, n ], n-EulerPhi[ n ] ] == 0, Print[ n ] ] ], {n, 1, 5000} ]
PROG
(Sage) [n for n in (1..50000) if not mod(n, 4)==2 and not is_prime(n) and mod(sigma(n), n - euler_phi(n))==0] # G. C. Greubel, May 03 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Jun 30 2000
STATUS
approved