login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054799 Integers n such that sigma(n+2) = sigma(n) + 2, where sigma = A000203, the sum of divisors of n. 16
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 434, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Below 1000000 only 3 composite numbers were found: 434, 8575, 8825. This sequence is the union of A050507 and A001359.

REFERENCES

Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions., M.Dekker Inc., New York, Problem 12 in Chapter V., p. 81.

LINKS

Table of n, a(n) for n=1..51.

EXAMPLE

n = 434, divisors = {1, 2, 7, 14, 31, 62, 217, 434}, sigma(434) = 768, sigma(436) = 770; n = 8575, divisors = {1, 5, 7, 25, 35, 49, 175, 245, 343, 1225, 1715, 8575}, sigma(8575) = 12400, sigma(8577) = 12402; n = 8825, divisors = {1, 5, 25, 353, 1765, 8825}, sigma(8525) = 10974, sigma(8527) = 10976.

MATHEMATICA

Select[Range[1500], DivisorSigma[1, #+2]==DivisorSigma[1, #]+2&] (* Jayanta Basu, May 01 2013 *)

PROG

(PARI) is(n)=sigma(n+2)==sigma(n)+2 \\ Charles R Greathouse IV, Feb 13 2013

CROSSREFS

Cf. A000203, A001359, A050507.

Sequence in context: A069233 A063700 A078859 * A093326 A001359 A096292

Adjacent sequences:  A054796 A054797 A054798 * A054800 A054801 A054802

KEYWORD

nonn

AUTHOR

Labos Elemer, May 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 20:24 EDT 2014. Contains 246367 sequences.