login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054423 Number of unlabeled 3-gonal cacti having n triangles. 5
1, 1, 1, 2, 7, 19, 86, 372, 1825, 9143, 47801, 254990, 1391302, 7713642, 43401974, 247216934, 1423531255, 8275108733, 48511773461, 286542497274, 1704002332513, 10195435737315, 61341136938138, 370933387552634, 2253475545208390, 13748639775492766, 84211761819147696 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also, the number of noncrossing partitions up to rotation composed of n blocks of size 3. - Andrew Howroyd, May 04 2018

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56 (pdf, dvi).

M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141.

Index entries for sequences related to cacti

FORMULA

a(n) = ((Sum_{d|n} phi(n/d)*binomial(3*d, d)) + (Sum_{d|gcd(n-1, 3)} phi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 04 2018

MAPLE

with(combinat): with(numtheory): m := 3: for p from 1 to 40 do s1 := 0: s2 := 0:

for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od:

for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od:

printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # James A. Sellers, Mar 17 2000

MATHEMATICA

a[0] = 1;

a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[3 #, #]&] + DivisorSum[GCD[n - 1, 3], EulerPhi[#] Binomial[3n/#, (n-1)/#]&])/(3n) - Binomial[3n, n]/ (2n + 1);

Table[a[n], {n, 0, 26}] (* Jean-Fran├žois Alcover, Jul 02 2018, after Andrew Howroyd *)

PROG

(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d)) + sumdiv(gcd(n-1, 3), d, eulerphi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1))} \\ Andrew Howroyd, May 04 2018

CROSSREFS

Column k=3 of A303694.

Cf. A052393, A054422, A082938.

Sequence in context: A243279 A080873 A126162 * A137990 A056650 A182169

Adjacent sequences:  A054420 A054421 A054422 * A054424 A054425 A054426

KEYWORD

nonn

AUTHOR

Simon Plouffe, Mar 15 2000

EXTENSIONS

More terms from James A. Sellers, Mar 17 2000

Terms a(24) and beyond from Andrew Howroyd, May 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 11:38 EST 2021. Contains 341656 sequences. (Running on oeis4.)