login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054423
Number of unlabeled 3-gonal cacti having n triangles.
5
1, 1, 1, 2, 7, 19, 86, 372, 1825, 9143, 47801, 254990, 1391302, 7713642, 43401974, 247216934, 1423531255, 8275108733, 48511773461, 286542497274, 1704002332513, 10195435737315, 61341136938138, 370933387552634, 2253475545208390, 13748639775492766, 84211761819147696
OFFSET
0,4
COMMENTS
Also, the number of noncrossing partitions up to rotation composed of n blocks of size 3. - Andrew Howroyd, May 04 2018
LINKS
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56.
M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141.
FORMULA
a(n) = ((Sum_{d|n} phi(n/d)*binomial(3*d, d)) + (Sum_{d|gcd(n-1, 3)} phi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 04 2018
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jun 01 2022
MAPLE
with(combinat): with(numtheory): m := 3: for p from 1 to 40 do s1 := 0: s2 := 0:
for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od:
for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od:
printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # James A. Sellers, Mar 17 2000
MATHEMATICA
a[0] = 1;
a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[3 #, #]&] + DivisorSum[GCD[n - 1, 3], EulerPhi[#] Binomial[3n/#, (n-1)/#]&])/(3n) - Binomial[3n, n]/ (2n + 1);
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
PROG
(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d)) + sumdiv(gcd(n-1, 3), d, eulerphi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1))} \\ Andrew Howroyd, May 04 2018
CROSSREFS
Column k=3 of A303694.
Sequence in context: A362097 A080873 A126162 * A137990 A056650 A182169
KEYWORD
nonn
AUTHOR
Simon Plouffe, Mar 15 2000
EXTENSIONS
More terms from James A. Sellers, Mar 17 2000
Terms a(24) and beyond from Andrew Howroyd, May 04 2018
STATUS
approved