|
|
A054363
|
|
Number of unlabeled 5-ary cacti having n polygons.
|
|
4
|
|
|
1, 1, 5, 15, 85, 510, 4051, 33130, 291925, 2661255, 25059670, 241724380, 2379912355, 23833198140, 242173108050, 2491817151160, 25921371278805, 272256630756265, 2884054952424115, 30784716141936525, 330853932861650870, 3577823885433087690, 38907658120970944700
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..200
Miklos Bona, Michel Bousquet, Gilbert Labelle and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56 (pdf, dvi).
Index entries for sequences related to cacti
|
|
FORMULA
|
a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 17 2017
|
|
MATHEMATICA
|
a[n_] := If[n == 0, 1, (Binomial[5*n, n]/(4*n + 1) + DivisorSum[n, Binomial[5*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 17 2017 *)
|
|
PROG
|
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ Andrew Howroyd, May 02 2018
|
|
CROSSREFS
|
Column k=5 of A303912.
Cf. A054364, A054365.
Sequence in context: A165470 A165625 A058820 * A211944 A336998 A276474
Adjacent sequences: A054360 A054361 A054362 * A054364 A054365 A054366
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Simon Plouffe
|
|
EXTENSIONS
|
More terms from Jean-François Alcover, Jul 17 2017
|
|
STATUS
|
approved
|
|
|
|