login
Number of self-conjugate 8-core partitions of n.
1

%I #13 Mar 20 2019 04:23:32

%S 1,1,0,1,1,1,1,1,2,2,2,2,3,3,3,4,1,1,5,2,3,4,4,5,3,4,4,6,4,5,6,4,5,7,

%T 6,7,7,5,7,7,6,5,8,5,5,6,6,6,13,11,4,11,7,9,9,6,11,12,10,8,13,9,8,15,

%U 9,7,12,8,10,14,9,10,13,13,8,16,12,12,15,8,9,14,12,11,19,11,12,18,14,11,17

%N Number of self-conjugate 8-core partitions of n.

%H F. Garvan, D. Kim and D. Stanton, <a href="http://www.digizeitschriften.de/dms/img/?PID=GDZPPN00210752X">Cranks and t-cores</a>, Inventiones Math. 101 (1990) 1-17.

%F Euler transform of period 16 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, -4, ...]. - _Michael Somos_, Apr 28 2003

%F Expansion of q^(-21/8) * eta(q^2)^2 * eta(q^16)^4 / (eta(q) * eta(q^4)) in powers of q. - _Michael Somos_, Apr 28 2003

%F G.f.: product((1-q^(16*i))^4*(1-q^(4*i-2))/(1-q^(2*i-1)), i=1..infinity)

%e G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2^x*10 + 2*x^11 + ...

%e G.f. = q^21 + q^29 + q^45 + q^53 + q^61 + q^69 + q^77 + 2*q^85 + 2*q^93 + 2*q^101 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^16]^4 / (QPochhammer[ x] QPochhammer[ x^4]), {x, 0, n}]; (* _Michael Somos_, Feb 22 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^4 / (eta(x + A) * eta(x^4 + A)), n))}; /* _Michael Somos_, Apr 28 2003 */

%Y Cf. A053692.

%K easy,nonn

%O 0,9

%A _James A. Sellers_, Feb 14 2000