This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053501 Number of degree-n permutations of order dividing 11. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013. L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168. FORMULA E.g.f.: exp(x+1/11*x^11). a(n) = n!*sum(if mod(11*k-n,10)=0 then C(k,(11*k-n)/10)*(11)^((k-n)/10)/k! else 0; k=1..n), n>0. - Vladimir Kruchinin, Sep 10 2010 MAPLE a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,        add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Feb 14 2013 MATHEMATICA a[n_] := n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *) PROG (Maxima) a(n):=n!*sum(if mod(11*k-n, 10)=0 then binomial(k, (11*k-n)/10)*(11)^((k-n)/10)/k! else 0, k, 1, n); /* Vladimir Kruchinin, Sep 10 2010 */ CROSSREFS Cf. A000085, A001470, A001472, A053495-A053505, A005388. Column k=11 of A008307. Sequence in context: A071552 A181726 A195394 * A229677 A253992 A253999 Adjacent sequences:  A053498 A053499 A053500 * A053502 A053503 A053504 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 15 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 19:25 EST 2018. Contains 317149 sequences. (Running on oeis4.)