login
A052434
Nearest integer to R(n) - pi(n), where R(x) is the Riemann prime counting function.
6
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0
OFFSET
2,108
COMMENTS
The Riemann prime counting function R(n) = Sum_{prime powers p^k <= n} 1/k = A096624(n)/A096625(n). - N. J. A. Sloane, Feb 07 2023
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
EXAMPLE
a(13) = 0 because R(13) = 5.504 and pi(13) = 6.
PROG
(XPCalc) a=Round(Ri(n)-Pi(n)) - Harry J. Smith, Dec 31 2008
CROSSREFS
KEYWORD
sign
EXTENSIONS
Corrected 6 terms, a(2), a(7), a(10), a(13), a(20) and a(48). Each was made 1 larger. Also gave an example for a(13) and a program for computing a(n). - Harry J. Smith, Dec 31 2008
STATUS
approved