login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052343 Number of ways to write n as the unordered sum of two triangular numbers (zero allowed). 18

%I

%S 1,1,1,1,1,0,2,1,0,1,1,1,1,1,0,1,2,0,1,0,1,2,1,0,1,1,0,1,1,1,1,2,0,0,

%T 1,0,2,1,1,1,0,0,2,1,0,1,2,0,1,1,0,2,0,0,0,2,2,1,1,0,1,1,0,0,1,1,2,1,

%U 0,1,1,0,2,1,0,0,2,0,1,1,0,3,0,1,1,0,0,1,1,0,1,2,1,1,2,0,0,1,0,1,1,1

%N Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).

%C Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed).

%C a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - _Reinhard Zumkeller_, May 15 2006

%C Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - _Vladimir Shevelev_, Jan 21 2009

%C The average value of a(n) for n<=x is pi/4+O(1/sqrt(x)). - _Vladimir Shevelev_, Feb 06 2009

%H Reinhard Zumkeller, <a href="/A052343/b052343.txt">Table of n, a(n) for n = 0..10000</a>

%H V. Shevelev, <a href="http://www.arxiv.org/abs/0901.3102">Binary additive problems: recursions for numbers of representations</a>.

%H V. Shevelev, <a href="http://www.arxiv.org/abs/0902.1046">Binary additive problems: theorems of Landau and Hardy-Littlewood type</a>.

%F a(n) = ceiling(A008441(n)/2). - _Reinhard Zumkeller_, Nov 03 2009

%F G.f.: (Sum_{k>=0} x^(k^2+k))(Sum_{k>=0} x^(k^2)).

%F Recurrence: a(n) = sum_{1<=k<=r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - _Vladimir Shevelev_, Feb 06 2009

%F a(n) = A025426(8n+2). - _Max Alekseyev_, Mar 09 2009

%F a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - _Ant King_, Dec 01 2010

%t Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* _Ant King_, Dec 01 2010 *)

%t d1[k_]:=Length[Select[Divisors[k],Mod[#,4]==1&]];d3[k_]:=Length[Select[Divisors[k],Mod[#,4]==3&]];f[k_]:=d1[k]-d3[k];g[k_]:=If[IntegerQ[Sqrt[4k+1]],1/2 (f[4k+1]+1),1/2 f[4k+1]];g[#]&/@Range[0,101] (* _Ant King_, Dec 01 2010 *)

%o (PARI) a(n)=if(n<0,0,sum(i=0,(sqrtint(4*n+1)-1)\2,issquare(n-i-i^2)))

%o (Haskell)

%o a052343 = (flip div 2) . (+ 1) . a008441

%o -- _Reinhard Zumkeller_, Jul 25 2014

%Y Cf. A000217, A052344-A052348, A053587, A056303, A056304.

%K nonn

%O 0,7

%A _Christian G. Bower_, Jan 23 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 2 23:10 EDT 2014. Contains 246369 sequences.