This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052343 Number of ways to write n as the unordered sum of two triangular numbers (zero allowed). 21

%I

%S 1,1,1,1,1,0,2,1,0,1,1,1,1,1,0,1,2,0,1,0,1,2,1,0,1,1,0,1,1,1,1,2,0,0,

%T 1,0,2,1,1,1,0,0,2,1,0,1,2,0,1,1,0,2,0,0,0,2,2,1,1,0,1,1,0,0,1,1,2,1,

%U 0,1,1,0,2,1,0,0,2,0,1,1,0,3,0,1,1,0,0,1,1,0,1,2,1,1,2,0,0,1,0,1,1,1

%N Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).

%C Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - _Michael Somos_, Aug 18 2003

%C a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - _Reinhard Zumkeller_, May 15 2006

%C Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - _Vladimir Shevelev_, Jan 21 2009

%C The average value of a(n) for n<=x is pi/4+O(1/sqrt(x)). - _Vladimir Shevelev_, Feb 06 2009

%H Reinhard Zumkeller, <a href="/A052343/b052343.txt">Table of n, a(n) for n = 0..10000</a>

%H V. Shevelev, <a href="http://www.arxiv.org/abs/0901.3102">Binary additive problems: recursions for numbers of representations</a>.

%H V. Shevelev, <a href="http://www.arxiv.org/abs/0902.1046">Binary additive problems: theorems of Landau and Hardy-Littlewood type</a>.

%F a(n) = ceiling(A008441(n)/2). - _Reinhard Zumkeller_, Nov 03 2009

%F G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - _Michael Somos_, Aug 18 2003

%F Recurrence: a(n) = sum_{1<=k<=r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - _Vladimir Shevelev_, Feb 06 2009

%F a(n) = A025426(8n+2). - _Max Alekseyev_, Mar 09 2009

%F a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - _Ant King_, Dec 01 2010

%F a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n) - _Michael Somos_, Jul 28 2015

%F a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - _Michael Somos_, Jul 28 2015

%F Convolution of A005369 and A010052. - _Michael Somos_, Jul 28 2015

%e G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...

%t Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* _Ant King_, Dec 01 2010 *)

%t d1[k_]:=Length[Select[Divisors[k],Mod[#,4]==1&]];d3[k_]:=Length[Select[Divisors[k],Mod[#,4]==3&]];f[k_]:=d1[k]-d3[k];g[k_]:=If[IntegerQ[Sqrt[4k+1]],1/2 (f[4k+1]+1),1/2 f[4k+1]];g[#]&/@Range[0,101] (* _Ant King_, Dec 01 2010 *)

%t a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]]; (* _Michael Somos_, Jul 28 2015 *)

%t a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* _Michael Somos_, Jul 28 2015 *)

%o (PARI) {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /*_Michael Somos_, Aug 18 2003 */

%o a052343 = (flip div 2) . (+ 1) . a008441

%o -- _Reinhard Zumkeller_, Jul 25 2014

%Y Cf. A000217, A052344-A052348, A053587, A056303, A056304.

%Y Cf. A053692, A093518, A121444, A259285, A259287, A260415, A260516.

%Y Cf. A005369, A010052.

%K nonn

%O 0,7

%A _Christian G. Bower_, Jan 23 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.