login
A051466
Largest product of primorials less than A025487(n) that divides A025487(n).
2
1, 2, 2, 4, 6, 8, 12, 6, 16, 12, 24, 30, 32, 36, 48, 60, 64, 72, 60, 96, 30, 72, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 180, 480, 512, 360, 576, 420, 432, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 210, 1260, 1296, 1440
OFFSET
2,2
COMMENTS
Note that A036041(A025487(n)) = A036041(a(n)) + 1 since A025487(n)/a(n) is prime.
LINKS
FORMULA
a(n) = A025487(n) / p, where p is the largest prime such that p^A051282(n) | A025487(n). - Charlie Neder, Oct 12 2018
EXAMPLE
A025487 = 1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, ...; a(n)= 1, 2, 2, 4, 6, 8, 12, 6, 16, 12, ... . (12 divides 36, but 16 through 32 do not.)
A025487(38) = 900 = 5#*5#. The largest product of primorials that divides this number will be 5#*3# = 180 = a(38). - Charlie Neder, Oct 20 2018
MATHEMATICA
(* First, load second program at A025487, then: *)
With[{s = Union@ Flatten@ f[5]}, Table[SelectFirst[Reverse@ Take[s, n - 1], Mod[s[[n]], #] == 0 &], {n, 2, Length@ s}]] (* Michael De Vlieger, Dec 27 2019 *)
PROG
(Haskell)
a051466 n = a051466_list !! (n-2)
a051466_list = f [head a025487_list] $ tail a025487_list where
f us (v:vs) = fromJust (find (\x -> mod v x == 0) us) : f (v : us) vs
-- Reinhard Zumkeller, Jul 17 2013
CROSSREFS
Sequence in context: A361394 A147982 A329899 * A320193 A260215 A261156
KEYWORD
easy,nice,nonn
AUTHOR
EXTENSIONS
Offset updated by Matthew Vandermast, Jul 03 2012
Name edited by Charlie Neder, Oct 20 2018
Name clarified by Antti Karttunen, Dec 24 2019
STATUS
approved