login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051010 Triangle T(m,n) giving of number of steps in the Euclidean algorithm for gcd(m,n) with 0<=m<n. 9
0, 0, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 3, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 2, 3, 3, 2, 0, 1, 1, 3, 1, 4, 2, 2, 0, 1, 2, 1, 2, 3, 2, 3, 2, 0, 1, 1, 2, 2, 1, 3, 3, 2, 2, 0, 1, 2, 3, 3, 2, 3, 4, 4, 3, 2, 0, 1, 1, 1, 1, 3, 1, 4, 2, 2, 2, 2, 0, 1, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 2, 0, 1, 1, 3, 2, 3, 2, 1, 3, 4, 3 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

T. D. Noe, Rows n=1..100 of triangle, flattened

Eric Weisstein's World of Mathematics, Euclidean Algorithm.

MATHEMATICA

t[m_, n_] := For[r[-1]=m; r[0]=n; k=1, True, k++, r[k] = Mod[r[k-2], r[k-1]]; If[r[k] == 0, Return[k-1]]]; Table[ t[m, n] , {n, 1, 14}, {m, 0, n-1}] // Flatten (* Jean-Fran├žois Alcover, Oct 25 2012 *)

PROG

(Haskell)

a051010 n k = snd $ until ((== 0) . snd . fst)

                    (\((x, y), i) -> ((y, mod x y), i + 1)) ((n, k), 0)

a051010_row n = map (a051010 n) [0..n-1]

a051010_tabl = map a051010_row [1..]

-- Reinhard Zumkeller, Jun 27 2013

CROSSREFS

Cf. A034883, A051011, A051012.

Cf. A049826.

Cf. A130130 (central terms).

Sequence in context: A048823 A173655 A025871 * A214269 A130027 A116949

Adjacent sequences:  A051007 A051008 A051009 * A051011 A051012 A051013

KEYWORD

nonn,nice,tabl

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 01:36 EDT 2019. Contains 327994 sequences. (Running on oeis4.)