OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..370
Marian Muresan, A concrete approach to classical analysis, CMS Books in Mathematics (2009) Table 10.2.
Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
FORMULA
E.g.f.: (3 - 2*exp(x))/(4 - 3*exp(x)).
a(n) is asymptotic to (1/12)*n!/log(4/3)^(n+1). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=4, so a(n)=(1/12)*sum(k>=0, (3/4)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 1. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-4*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/12) * Sum_{k>=1} k^n * (3/4)^k for n>0. - Paul D. Hanna, Nov 28 2014
a(n) = Sum_{k=1..n} Stirling2(n, k) * k! * 3^(k-1). - Paul D. Hanna, Nov 28 2014, after Vladeta Jovovic in A050351
a(n) = 1 + 3 * Sum_{k=1..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
MAPLE
seq(coeff(series( (3-2*exp(x))/(4-3*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(3-2Exp[x])/(4-3Exp[x]), {x, 0, nn}], x]*Range[0, nn]!] (* Harvey P. Dale, Aug 16 2012 *)
PROG
(PARI) a(n)=n!*if(n<0, 0, polcoeff((3-2*exp(x))/(4-3*exp(x))+O(x^(n+1)), n))
(PARI) {a(n)=if(n==0, 1, (1/12)*round(suminf(k=1, k^n * (3/4)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
(Magma) [1] cat [(&+[3^(j-1)*Factorial(j)*StirlingSecond(n, j): j in [1..n]]) : n in [0..20]]; // G. C. Greubel, Jun 08 2020
(Sage) [1]+[sum( 3^(j-1)*factorial(j)*stirling_number2(n, j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved