login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050352
Number of 4-level labeled linear rooted trees with n leaves.
13
1, 1, 7, 73, 1015, 17641, 367927, 8952553, 248956855, 7788499561, 270732878647, 10351919533033, 431806658432695, 19512813265643881, 949587798053709367, 49512355251796513513, 2753726282896986372535, 162725978752448205162601
OFFSET
0,3
LINKS
Marian Muresan, A concrete approach to classical analysis, CMS Books in Mathematics (2009) Table 10.2.
Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
FORMULA
E.g.f.: (3 - 2*exp(x))/(4 - 3*exp(x)).
a(n) is asymptotic to (1/12)*n!/log(4/3)^(n+1). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=4, so a(n)=(1/12)*sum(k>=0, (3/4)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 1. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-4*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/12) * Sum_{k>=1} k^n * (3/4)^k for n>0. - Paul D. Hanna, Nov 28 2014
a(n) = Sum_{k=1..n} Stirling2(n, k) * k! * 3^(k-1). - Paul D. Hanna, Nov 28 2014, after Vladeta Jovovic in A050351
a(n) = 1 + 3 * Sum_{k=1..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
MAPLE
seq(coeff(series( (3-2*exp(x))/(4-3*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(3-2Exp[x])/(4-3Exp[x]), {x, 0, nn}], x]*Range[0, nn]!] (* Harvey P. Dale, Aug 16 2012 *)
PROG
(PARI) a(n)=n!*if(n<0, 0, polcoeff((3-2*exp(x))/(4-3*exp(x))+O(x^(n+1)), n))
(PARI) {a(n)=if(n==0, 1, (1/12)*round(suminf(k=1, k^n * (3/4)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
(Magma) [1] cat [(&+[3^(j-1)*Factorial(j)*StirlingSecond(n, j): j in [1..n]]) : n in [0..20]]; // G. C. Greubel, Jun 08 2020
(Sage) [1]+[sum( 3^(j-1)*factorial(j)*stirling_number2(n, j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020
CROSSREFS
Equals 1/3 * A032033(n) for n>0.
Sequence in context: A124547 A084363 A321837 * A261783 A250917 A112939
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved