login
A049761
Triangular array T, read by rows: T(n,k) = n^3 mod k, for k = 1..n and n >= 1.
4
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 3, 1, 0, 0, 0, 2, 0, 2, 2, 1, 0, 0, 1, 0, 1, 4, 3, 1, 1, 0, 0, 0, 1, 0, 0, 4, 6, 0, 1, 0, 0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 8, 1, 0, 0, 1, 1, 1, 2, 1, 6, 5, 1, 7, 8, 1, 0
OFFSET
1,13
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
0;
0, 0;
0, 1, 0;
0, 0, 1, 0;
0, 1, 2, 1, 0;
0, 0, 0, 0, 1, 0;
0, 1, 1, 3, 3, 1, 0;
0, 0, 2, 0, 2, 2, 1, 0;
0, 1, 0, 1, 4, 3, 1, 1, 0;
0, 0, 1, 0, 0, 4, 6, 0, 1, 0;
0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0;
...
MAPLE
seq(seq( `mod`(n^3, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
MATHEMATICA
Table[PowerMod[n, 3, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
PROG
(PARI) T(n, k) = lift(Mod(n, k)^3);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019
(Magma) [[Modexp(n, 3, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
(Sage) [[power_mod(n, 3, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(n, 3, k) ))); # G. C. Greubel, Dec 13 2019
CROSSREFS
Row sums are in A049762.
Sequence in context: A286561 A068101 A094263 * A211225 A030618 A025448
KEYWORD
nonn,tabl
STATUS
approved