login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049341 a(n+1) = sum of digits of a(n) + a(n-1). 4
3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1) = a007953(a(n) + a(n-1)) for n > 0.

Terms of the simple continued fraction of 21447/[sqrt(1347705679)-29932]. [From Paolo P. Lava, Aug 06 2009]

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Michael Gilleland, Some Self-Similar Integer Sequences

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

Period 8.

a(n)=1/224*{45*(n mod 8)+213*[(n+1) mod 8]-123*[(n+2) mod 8]+129*[(n+3) mod 8]+45*[(n+4) mod 8]+129*[(n+5) mod 8]-39*[(n+6) mod 8]-39*[(n+7) mod 8]} with n>=0 - Paolo P. Lava, Nov 27 2006

EXAMPLE

After 6,9 we get 6+9 = 15 -> 1+5 = 6.

MATHEMATICA

LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1}, {3, 6, 9, 6, 6, 3, 9, 3}, 112] (* Ray Chandler, Aug 27 2015 *)

PROG

(Haskell)

a049341 n =  a030132_list !! n

a049341_list =

   3 : 6 : map a007953 (zipWith (+) a049341_list $ tail a049341_list)

-- Reinhard Zumkeller, Aug 20 2011

CROSSREFS

Cf. A030132, A030133, A049342.

Sequence in context: A019700 A151862 A067722 * A187082 A137991 A021077

Adjacent sequences:  A049338 A049339 A049340 * A049342 A049343 A049344

KEYWORD

base,nonn

AUTHOR

Damir Olejar

EXTENSIONS

Definition improved by Reinhard Zumkeller, Aug 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 22:32 EST 2018. Contains 299297 sequences. (Running on oeis4.)