login
A049287
Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.
15
1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, 60, 336, 200, 416, 188, 1312, 423, 1400, 928, 3104, 1182, 8768, 2192, 8364, 6768, 16460, 11144, 46784, 14602, 58288, 44424, 136128, 52488, 355200, 99880, 432576, 351424, 762608, 364724, 2122944, 798952, 3356408
OFFSET
1,2
COMMENTS
Further values for (twice) squarefree and (twice) prime-squared orders can be found in the Liskovets reference.
Terms may be computed by filtering potentially isomorphic graphs of A285620 through nauty. - Andrew Howroyd, Apr 29 2017
LINKS
V. A. Liskovets, Some identities for enumerators of circulant graphs, arXiv:math/0104131 [math.CO], 2001; J. Alg. Comb. 18 (2003) 189.
Brendan McKay, Nauty home page.
R. Poeschel, Publications.
Eric Weisstein's World of Mathematics, Circulant Graph.
Eric Weisstein's World of Mathematics, Circulant Matrix.
FORMULA
There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
From Andrew Howroyd, Apr 24 2017: (Start)
a(n) <= A285620(n).
a(n) = A285620(n) for n squarefree or twice square free.
a(A000040(n)^2) = A038781(n).
a(n) = Sum_{d|n} A075545(d).
(End)
MATHEMATICA
CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* Eric W. Weisstein, May 13 2017 *)
KEYWORD
nonn,nice
EXTENSIONS
a(48)-a(50) from Andrew Howroyd, Apr 29 2017
STATUS
approved