OFFSET
1,2
COMMENTS
From Ant King, Nov 18 2011: (Start)
lim( n -> Infinity, a(2n+1)/a(2n)) = 1/25 * (137 + 36 * sqrt(14)).
lim( n -> Infinity, a(2n)/a(2n-1)) = 1/25 * (39 + 8 * sqrt(14)).
(End)
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Nonagonal Square Number.
Index entries for linear recurrences with constant coefficients, signature (0,30,0,-1)
FORMULA
From Ant King, Nov 18 2011: (Start)
a(n) = 30 * a(n-2) - a(n-4).
G.f.: x * (1 + x) ^ 3 / (1 - 30 * x ^ 2 + x ^ 4).
Let p = 8 * sqrt(7) + 9 * sqrt(14) - 7 * sqrt(2) - 28 and q = 7 * sqrt(2) + 9 * sqrt(14) - 8 * sqrt(7) - 28. Then
a(n) = 1/112 * ( ( p + q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7)) ^ n - ( p - q * (-1) ^ n) * ( 2 * sqrt(2) - sqrt(7)) ^ ( n - 1) ).
a(n) = floor ( 1/112 * ( p + q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7)) ^ n ).
(End)
MATHEMATICA
LinearRecurrence[ {0, 30, 0, - 1 }, { 1, 3, 33, 91 } , 21 ] (* Ant King, Nov 18 2011 *)
PROG
(PARI) Vec(x*(x+1)^3/(x^4-30*x^2+1) + O(x^50)) \\ Colin Barker, Jun 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved