login
A048786
Triangle of coefficients of certain exponential convolution polynomials.
4
1, 8, 1, 96, 24, 1, 1536, 576, 48, 1, 30720, 15360, 1920, 80, 1, 737280, 460800, 76800, 4800, 120, 1, 20643840, 15482880, 3225600, 268800, 10080, 168, 1, 660602880, 578027520, 144506880, 15052800, 752640, 18816, 224, 1
OFFSET
1,2
COMMENTS
i) p(n,x) := sum(a(n,m)*x^m,m=1..n), p(0,x) := 1, are monic polynomials satisfying p(n,x+y)= sum(binomial(n,k)*p(k,x)*p(n-k,y),k=0..n), (exponential convolution polynomials). ii) In the terminology of the umbral calculus (see reference) p(n,x) are called associated to f(t)= t/(1+4*t). iii) a(n,1)= A034177(n).
Also the Bell transform of A034177. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Also the fourth power of the unsigned Lah triangular matrix A105278. - Shuhei Tsujie, May 18 2019
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -3 <= d <= 4). - Shuhei Tsujie, May 18 2019
REFERENCES
S. Roman, The Umbral Calculus, Academic Press, New York, 1984
LINKS
FORMULA
a(n, m) = n!*4^(n-m)*binomial(n-1, m-1)/m!, n >= m >= 1; a(n, m) := 0, m>n; a(n, m) = (n!/m!)*A038231(n-1, m-1) = 4^(n-m)*A008297(n, m) (Lah-triangle).
EXAMPLE
Triangle begins:
1;
8, 1;
96, 24, 1;
1536, 576, 48, 1;
30720, 15360, 1920, 80, 1;
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 4^n*(n+1)!, 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
rows = 8;
t = Table[4^n*(n+1)!, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
CROSSREFS
KEYWORD
easy,nonn,tabl
EXTENSIONS
T(8,4) corrected by Jean-François Alcover, Jun 22 2018
STATUS
approved