login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048581 Numerators of b(n) = (1/16^n)*(4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). 4
47, 53, 829, 79, 857, 1901, 5273, 97, 1787, 5563, 4519, 4057, 19139, 743, 25681, 229, 3687, 18647, 8329, 3853, 51067, 28069, 20483, 335, 72791, 4379, 85093, 22901, 6557, 52673, 112577, 2501, 127759, 13571, 15989, 38083, 161003, 28319, 35813 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sum_{k>=0} b(k) = Pi was the first BBP formula for Pi (Bayley-Borwein-Plouffe in 1995). Allows one to extract any specified binary digit of Pi.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

B. Gourevitch, L'univers de Pi

FORMULA

Sum_{k>=0} b(k) = Pi.

a(n) = numerator((1/16)^n*sum(i=1,4,((-1)^(ceiling(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))). - Alexander R. Povolotsky, Aug 31 2009

MATHEMATICA

Numerator[Table[1/16^n*(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6)), {n, 0, 100}]] (* G. C. Greubel, Feb 18 2017 *)

PROG

(PARI) a(n)=numerator(1/16^n*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)))

(PARI) a(n)=numerator((1/16)^n*sum(i=1, 4, ((-1)^(ceil(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))) \\ Alexander R. Povolotsky, Aug 31 2009

CROSSREFS

Cf. A066968.

Sequence in context: A106279 A275022 A355601 * A169716 A045140 A104852

Adjacent sequences: A048578 A048579 A048580 * A048582 A048583 A048584

KEYWORD

easy,frac,nonn,look

AUTHOR

Benoit Cloitre, Aug 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 19:19 EST 2022. Contains 358669 sequences. (Running on oeis4.)