login
Array T(k,n) read by antidiagonals: T(n,k) = 2^(n-1) * ((k+1)*n - 2k) + k + 1.
11

%I #6 Mar 30 2012 18:56:55

%S 1,2,1,5,2,1,13,6,2,1,33,18,7,2,1,81,50,23,8,2,1,193,130,67,28,9,2,1,

%T 449,322,179,84,33,10,2,1,1025,770,451,228,101,38,11,2,1,2305,1794,

%U 1091,580,277,118,43,12,2,1,5121,4098,2563,1412,709

%N Array T(k,n) read by antidiagonals: T(n,k) = 2^(n-1) * ((k+1)*n - 2k) + k + 1.

%C n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is 1+(n-1)*(k+1), for n=1,2,3,...; k=0,1,2,...

%e Diagonals: {1}; {2,1}; {5,2,1}; ...

%Y Row 1 = (1, 2, 5, 13, 33, ...) = A005183.

%K nonn,tabl

%O 0,2

%A _Clark Kimberling_

%E Formula from _Ralf Stephan_, Jan 15 2004