login
A048471
Array T read by diagonals: T(k,n) = 2^(k-1) * (3^n - 1) + 1.
9
1, 2, 1, 5, 3, 1, 14, 9, 5, 1, 41, 27, 17, 9, 1, 122, 81, 53, 33, 17, 1, 365, 243, 161, 105, 65, 33, 1, 1094, 729, 485, 321, 209, 129, 65, 1, 3281, 2187, 1457, 969, 641, 417, 257, 129, 1, 9842, 6561, 4373, 2913, 1937, 1281, 833, 513
OFFSET
0,2
FORMULA
n-th difference of (T(k, n), T(k, n-1), ..., T(k, 0)) is 2^(n+k-1), for n=1, 2, 3, ...; k=0, 1, 2, ...
EXAMPLE
Diagonals (each starting on row 1): {1}; {2,1}; {5,3,1}; ...
CROSSREFS
Row 1 = (1, 2, 5, 14, 41, ...) = A007051.
Row 2 = (1, 3, 9, 27, 81, ...) = A000244.
Other rows: A048473 (k=2), A036543 (k=3), A036545 (k=4), A036546 (k=5), A036547 (k=6), A036548 (k=7), A036549 (k=8).
Diagonal is A036551, antidiagonal sums are A036550.
Sequence in context: A125170 A054445 A105848 * A067345 A242431 A349934
KEYWORD
nonn,tabl
EXTENSIONS
Simpler definition from Ralf Stephan, Feb 17 2004
STATUS
approved