login
Floor(8n/7).
0

%I #19 Mar 06 2016 08:44:23

%S 0,1,2,3,4,5,6,8,9,10,11,12,13,14,16,17,18,19,20,21,22,24,25,26,27,28,

%T 29,30,32,33,34,35,36,37,38,40,41,42,43,44,45,46,48,49,50,51,52,53,54,

%U 56,57,58,59,60,61,62,64,65,66,67,68,69,70,72,73,74,75

%N Floor(8n/7).

%C Up to the offset identical to A004777, cf formula. - _M. F. Hasler_, Oct 06 2014

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1).

%F a(n) = A004777(n+1). - _M. F. Hasler_, Oct 06 2014

%F G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6) / (1 - x - x^7 + x^8). [_Bruno Berselli_, Oct 06 2014]

%F a(n) = n + floor(n/7) = a(n-1) + a(n-7) - a(n-8). [_Bruno Berselli_, Oct 06 2014]

%t Table[Floor[8 n/7], {n, 0, 80}] (* _Bruno Berselli_, Oct 06 2014 *)

%t LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,8},70] (* _Harvey P. Dale_, Mar 06 2016 *)

%o (PARI) a(n)=n\7+n \\ _M. F. Hasler_, Oct 06 2014

%Y Cf. A032766, A004773, A001068, A047226, A047368, A004777.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Ray Chandler_, Sep 05 2004

%E Restored to version of early 2008 by _M. F. Hasler_, Oct 06 2014