login
A046783
Number of partitions of n with equal nonzero number of parts congruent to each of 0, 1, 2 and 3 (mod 5).
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 1, 5, 10, 1, 1, 5, 15, 21, 5, 5, 16, 36, 41, 19, 17, 41, 76, 80, 53, 46, 92, 151, 156, 132, 111, 192, 287, 307, 293, 248, 378, 537, 599, 616, 521, 722, 990, 1158, 1220, 1051, 1346, 1818, 2191, 2339, 2050, 2481, 3302
OFFSET
0,17
LINKS
FORMULA
G.f.: (Sum_{k>0} x^(11*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+4)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=1, n\11, x^(11*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^(n-11*k)))^4)/prod(j=0, n\5, 1 - x^(5*j+4) + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046787.
Sequence in context: A335951 A254156 A344386 * A134832 A123163 A194794
KEYWORD
nonn
STATUS
approved