login
A046768
Number of partitions of n with equal number of parts congruent to each of 0, 2 and 3 (mod 4).
2
1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 9, 11, 12, 12, 19, 26, 28, 29, 40, 55, 62, 64, 81, 113, 132, 139, 163, 221, 265, 284, 320, 421, 514, 563, 619, 783, 965, 1074, 1169, 1432, 1765, 1996, 2167, 2575, 3159, 3613, 3931, 4566, 5552, 6410, 7006, 7990, 9605
OFFSET
0,6
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(9*k)/(Product_{j=1..k} 1 - x^(4*j))^3)/(Product_{j>=0} 1 - x^(4*j+1)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\9, x^(9*k)/prod(j=1, k, 1 - x^(4*j) + O(x*x^n))^3)/prod(j=0, n\4, 1 - x^(4*j+1) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A131799 A078635 A286305 * A363405 A274151 A216393
KEYWORD
nonn
STATUS
approved