login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046693
Size of smallest subset S of N={0,1,2,...,n} such that S-S=N, where S-S={abs(i-j) | i,j in S}.
10
1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16
OFFSET
0,2
COMMENTS
It is easy to show that a(n+1) must be no larger than a(n)+1. Problem: Can a(n+1) ever be smaller than a(n)?
Problem above solved in A103300. a(137) smaller than a(136).
Except for initial term, round(sqrt(3*n + 9/4)) up to n=51. See A308766 for divergences up to n=213. See A326499 for a list of best known solutions.
From Ed Pegg Jr, Jun 23 2019: (Start)
Minimal marks for a sparse ruler of length n.
Minimal vertices in a graceful graph with n edges. (End)
LINKS
Andrew Granville and Friedrich Roesler, The set of differences of a given set
Andrew Granville and Friedrich Roesler, The set of differences of a given set, Amer. Math. Monthly, 106 (1999), 338-344.
J. Leech, On the representation of 1, 2, ..., n by differences, J. Lond. Math. Soc. 31 (1956), 160-169.
Aleksi Saarela and Aleksi Vanhatalo, A Connection Between Unbordered Partial Words and Sparse Rulers, arXiv:2408.16335 [math.CO], 2024. See p. 17.
EXAMPLE
a(10)=6 since all integers in {0,1,2...10} are differences of elements of {0,1,2,3,6,10}, but not of any 5-element set.
a(17)=7 since all integers in {0,1,2...17} are differences of elements of {0,1,8,11,13,15,17}, but not of any 6-element set.
In other words, {0,1,8,11,13,15,17} is a restricted difference basis w.r.t. A004137(7)=17.
MATHEMATICA
Prepend[Table[Round[Sqrt[3*n+9/4]]+If[MemberQ[A308766, n], 1, 0], {n, 1, 213}], 1]
CROSSREFS
Sequence in context: A239308 A216256 A309407 * A368910 A196376 A156077
KEYWORD
nonn,hard
STATUS
approved