login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046452
Numbers that are the product of 3 prime factors whose concatenation is a palindrome.
1
8, 27, 125, 343, 429, 507, 795, 1309, 1331, 1533, 1547, 1587, 2023, 2097, 3633, 3729, 3897, 5289, 5295, 5547, 6597, 7833, 8029, 8427, 9583, 9795, 12207, 12795, 13489, 13573, 14133, 14147, 14295, 15463, 15549, 15987, 16233, 17295, 20667, 22139, 28273, 28609, 28847, 28951
OFFSET
1,1
COMMENTS
Sequence is the intersection of A046447 and A014612 without the initial term. - Charles R Greathouse IV, Apr 23 2010
Apart from a(1) all terms are odd. Apart from a(3) 5 divides a(n) if and only if 15 divides a(n). - Charles R Greathouse IV, Jan 04 2013
LINKS
EXAMPLE
14133 = 3 * 7 * 673 -> 37673 is palindromic.
MAPLE
Nmax:= 10000; # to get all a(n) <= Nmax
R:= {8}:
for i from 2 do
a:= ithprime(i);
if a^3 > Nmax then break end if;
m:= length(a); tm:= 10^m;
al:= convert(a, base, 10);
ar:= add(10^(m-k)*al[k], k=1..m);
for j from i do
b:= ithprime(j);
if a*b^2 > Nmax then break end if;
bl:= convert(b, base, 10);
k0:= ceil((b-ar)/tm);
for k from k0 do
c:= ar + k*tm;
if a*b*c > Nmax then break end if;
if not isprime(c) then next end if;
L:= [op(convert(c, base, 10)), op(bl), op(al)];
if ListTools:-Reverse(L)=L then
R:= R union {a*b*c}
end if;
end do
end do
end do:
R; # Robert Israel, Jan 05 2013
MATHEMATICA
pfpQ[n_]:=Module[{c=Flatten[IntegerDigits/@Table[#[[1]], {#[[2]]}]&/@ FactorInteger[ n]]}, c==Reverse[c]]; Select[Range[30000], PrimeOmega[#] == 3&&pfpQ[#]&] (* Harvey P. Dale, Jan 05 2013 *)
PROG
(PARI) ispal(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1
list(lim)=my(v=List([8]), t); forprime(p=3, lim\9, forprime(q=3, min(lim\(3*p), p), t=p*q; forprime(r=3, min(lim\t, q), if(ispal(eval(Str(r, q, p))), listput(v, t*r))))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 04 2013
CROSSREFS
Cf. A046447.
Sequence in context: A062838 A240859 A277047 * A030078 A051751 A133042
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jul 15 1998
EXTENSIONS
Missing a(16) from Charles R Greathouse IV on the advice of Harvey P. Dale, Jan 04 2013
STATUS
approved