login
Numbers whose cube is palindromic in base 11.
2

%I #29 Aug 11 2024 14:39:01

%S 0,1,2,7,12,122,133,1332,14642,14763,15984,161052,162504,175704,

%T 1771562,1772893,1932624,19487172,19503144,19648344,21258744,

%U 214358882,214373523,214521264,216130564,233846064,2357947692,2358123384,2377434984,2572306584,25937424602

%N Numbers whose cube is palindromic in base 11.

%C Contains all terms of A069748, interpreted as base-11 numbers, and then converted to decimal. - _Michael S. Branicky_, Aug 06 2022

%H Michael S. Branicky, <a href="/A046243/b046243.txt">Table of n, a(n) for n = 1..36</a>

%H Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg4.htm">World!Of Numbers</a>, Palindromic cubes in bases 2 to 17.

%t For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *)

%o (PARI) isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ _Michel Marcus_, Aug 02 2022

%o (Python)

%o from itertools import count, islice

%o from sympy.ntheory import is_palindromic as ispal

%o def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11))

%o print(list(islice(agen(), 17))) # _Michael S. Branicky_, Aug 02 2022

%Y Cf. A046244, A069748.

%K nonn,base

%O 1,3

%A _Patrick De Geest_, May 15 1998

%E More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006

%E a(29) and beyond from _Michael S. Branicky_, Aug 07 2022