login
A046138
Primes p such that p+6 and p+8 are also primes.
8
5, 11, 23, 53, 101, 131, 173, 191, 233, 263, 563, 593, 653, 821, 1013, 1223, 1283, 1481, 1601, 1613, 1871, 2081, 2333, 2543, 2963, 3251, 3323, 3461, 3533, 3761, 3911, 3923, 4013, 4211, 4253, 4643, 4793, 5003, 5273, 5471, 5651, 5843, 5861, 6263, 6353, 6563
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet.
FORMULA
A023201 INTERSECT A023202. - R. J. Mathar, Jan 23 2009
MAPLE
for a from 3 by 2 to 10000 do
if `and`(isprime(a), isprime(a+6), isprime(a+8)) then print(a); end if;
end do; # Matt C. Anderson, Jul 24 2015
MATHEMATICA
Select[Range@ 6000, AllTrue[{#, # + 6, # + 8}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
Select[Prime[Range[1000]], AllTrue[#+{6, 8}, PrimeQ]&] (* Harvey P. Dale, Jun 05 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(10^4)| IsPrime(p+6) and IsPrime(p+8)]; // Vincenzo Librandi, Jul 26 2015
(Perl) use ntheory ":all"; say for sieve_prime_cluster(0, 1e5, 6, 8); # Dana Jacobsen, Oct 17 2017
CROSSREFS
Sequence in context: A102444 A132177 A340340 * A296322 A097279 A106171
KEYWORD
nonn
STATUS
approved