login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046126
Denominators q[ n ] of convergents to Stern's non-simple continued fraction for Pi/2.
3
1, 3, -3, -15, 45, 315, -1575, -14175, 99225, 1091475, -9823275, -127702575, 1404728325, 21070924875, -273922023375, -4656674397375, 69850115960625, 1327152203251875, -22561587455281875, -473793336560919375
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Pi.
Eric Weisstein's World of Mathematics, Pi Continued Fraction.
FORMULA
E.g.f.: exp(asinh(x))((1+x)/(1+x^2)+(2-x+x^2)/(1+x^2)^(3/2))-2. - Michael Somos, Mar 11 2004
E.g.f.: (1+3*x+2*x^3)/(1+x^2)^(3/2). - Vaclav Kotesovec, Oct 05 2013
a(n) ~ 2*(cos(Pi*n/2)+sin(Pi*n/2)) * n^(n+1) / exp(n). - Vaclav Kotesovec, Oct 05 2013
MATHEMATICA
b[ n_ ] := 2-(-1)^n; a[ 1 ] := -1; a[ n_Integer?EvenQ ] := -n(n+1); a[ n_Integer?OddQ ] := -(n-2)(n-1); then use the standard algorithm to get p[ n ]/q[ n ].
a[n_] := Product[If[OddQ[k], k+2, 1-k], {k, 1, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 06 2012, after 1st Pari program *)
PROG
(PARI) a(n)=if(n<0, 0, prod(k=1, n, if(k%2, k+2, 1-k)))
(PARI) {a(n)=local(A); if(n<0, 0, A=matrix(2, n+1); for(k=0, n, A[2, k+1]=if(k%2, 3, 1); A[1, k+1]=if(k<2, (-1)^k, if(k%2, -(k-2)*(k-1), -k*(k+1)))); contfracpnqn(A)[2, 1])} /* Michael Somos, Jul 15 2003 */
CROSSREFS
Numerators p[ n ] are (-1)^[n/2]*A001900(n). See also A013069.
Cf. A079484.
Sequence in context: A209430 A160624 A049606 * A143257 A089403 A239600
KEYWORD
sign,frac
STATUS
approved