login
Smallest prime p dividing n#-1, n#, or n#+1, n squarefree.
0

%I #13 Mar 31 2021 23:19:30

%S 2,2,2,3,3,3,5,7,13,7,5,17,7,7,11,23,13,5,5,5,11,17,7,23,19,13,41,7,

%T 43,23,47,17,19,11,19,29,13,17,31,13,11,67,23,7,71,53,37,11,13,29,41,

%U 83,17,43,29,89,13,31,47,19,17,101,17,103,7,53,107,109,11,37,113,19

%N Smallest prime p dividing n#-1, n#, or n#+1, n squarefree.

%D C. Ashbacher, A Note on the Smarandache Near-To-Primorial Function, Smarandache Notions J. 7 (1996), 46-49.

%D M. R. Mudge, The Smarandache Near-To-Primorial Function, Abstracts of Papers Presented to the Amer. Math. Soc., 17 (1996), 585

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmarandacheNear-to-PrimorialFunction.html">Smarandache Near-to-Primorial Function</a>

%F Smallest prime p such that n divides one of p#-1, p#, p#+1

%Y Cf. A002110 (primorial numbers), A046027, A013929.

%K nonn

%O 1,1

%A _Eric W. Weisstein_