login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045992
a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,...,n to 1,...,n.
5
1, 1, 4, 17, 66, 247, 918, 3425, 12862, 48611, 184746, 705421, 2704144, 10400587, 40116586, 155117505, 601080374, 2333606203, 9075135282, 35345263781, 137846528800, 538257874419, 2104098963698, 8233430727577, 32247603683076
OFFSET
0,3
LINKS
FORMULA
G.f.: (x^2 - (sqrt(1-4*x)+2)*x + 1)/(sqrt(1-4*x)*(x-1)^2). - Harvey P. Dale, Apr 18 2014
D-finite with recurrence: n*a(n) + (-7*n+5)*a(n-1) + 3*(5*n-8)*a(n-2) + (-13*n+33)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jan 28 2020
EXAMPLE
a(3)=17 since can map (1,2,3) to (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,1,1), (2,2,1), (2,2,2), (2,2,3), (2,3,3), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), or (3,3,3) but not for example to (1,3,2).
MATHEMATICA
Table[Binomial[2n, n]-n, {n, 0, 30}] (* or *) CoefficientList[Series[ (x^2- (Sqrt[1-4 x]+2) x+1)/(Sqrt[1-4 x] (x-1)^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 18 2014 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved