login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045899 Numbers k such that k+1 and 3*k+1 are perfect squares. 15
0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Essentially the same as A051047.

It appears that a(n) = A046175(n)-A046174(n), that is, the triangular index of the n-th pentagonal triangular number minus its pentagonal index. - Jonathan Vos Post, Feb 28 2011

Sequence lists the nonnegative x solutions when (x + 1)*(3*x + 1) is a square. Positive x solutions when (x - 1)*(3*x - 1) is a square are in A011922. - Bruno Berselli, Feb 20 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..870

A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).

A. Dujella and A. Pethoe, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.

A. Dujella, The Problem of Diophantus and Davenport, References

A. Dujella, Publications of Andrej Dujella

Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6

P. Gibbs, 1,3,8,120 ... A Diophantine Problem

P. Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.

Index entries for linear recurrences with constant coefficients, signature (15,-15,1).

FORMULA

a(n) = A046184(n+1) - 1.

a(n) = 14*a(n-1) - a(n-2) + 8.

a(n) = ((2 + sqrt(3))*(7 + 4*sqrt(3))^n + (2 - sqrt(3))*(7 - 4*sqrt(3))^n - 4)/6. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006

a(n) = 8*A076139(n) = 4*A217855(n) = 2*A123480(n) = 8/3*A076140(n). - Peter Bala, Dec 31 2012

From Colin Barker, Jul 30 2013: (Start)

G.f.: -8*x^2 / ((x - 1)*(x^2 - 14*x + 1)).

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). (End)

E.g.f.: (-4*exp(x) + (2 + sqrt(3))*exp((7-4*sqrt(3))*x) + (2 - sqrt(3))*exp((7+4*sqrt(3))*x))/6. - Ilya Gutkovskiy, Apr 28 2016

MATHEMATICA

f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *)

Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x]] (* G. C. Greubel, Jun 07 2017 *)

PROG

(PARI) x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017

CROSSREFS

Cf. A051047, A067900. A076139, A076140, A123480, A217855.

Cf. A046184, A245031.

Sequence in context: A086302 A053129 A249641 * A165231 A004381 A166179

Adjacent sequences:  A045896 A045897 A045898 * A045900 A045901 A045902

KEYWORD

nonn,easy

AUTHOR

Andrej Dujella (duje(AT)math.hr)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 13:14 EST 2020. Contains 332159 sequences. (Running on oeis4.)