login
Expansion of Product_{k>=0} 1/(1 - x^(k+1))^A001156(k).
2

%I #24 Nov 10 2018 09:47:31

%S 1,1,2,3,5,8,13,19,29,43,65,94,138,197,284,403,571,801,1124,1562,2170,

%T 2992,4118,5636,7700,10467,14201,19189,25873,34763,46614,62305,83113,

%U 110565,146791,194408,256985,338934,446211,586231,768855,1006450,1315304,1715882,2234957,2906250

%N Expansion of Product_{k>=0} 1/(1 - x^(k+1))^A001156(k).

%H Alois P. Heinz, <a href="/A045842/b045842.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: Product_{k>=0} 1/(1 - x^(k+1))^A001156(k).

%e 1/((1-x)^1 * (1-x^2)^1 * (1-x^3)^1 * (1-x^4)^1 * (1-x^5)^2 * (1-x^6)^2 * (1-x^7)^2 * (1-x^8)^2 * (1-x^9)^3 * ...) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 19*x^7 + 29*x^8 + 43*x^9 + ... .

%Y Cf. A001156.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Seiichi Manyama_, Nov 10 2018