login
Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.
14

%I #91 Sep 29 2021 10:26:27

%S 1,-2,-1,9,8,2,-64,-79,-36,-6,625,974,622,192,24,-7776,-14543,-11758,

%T -5126,-1200,-120,117649,255828,248250,137512,45756,8640,720,-2097152,

%U -5187775,-5846760,-3892430,-1651480,-445572,-70560,-5040

%N Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.

%C The first derivative of the Lambert W function is given by dW/dz = exp(-W)/(1+W). Further differentiation yields d^2/dz^2(W) = exp(-2*W)*(-2-W)/(1+W)^3, d^3/dz^3(W) = exp(-3*W)*(9+8*W+2*W^2)/(1+W)^5 and, in general, d^n/dz^n(W) = exp(-n*W)*R(n,W)/(1+W)^(2*n-1), where R(n,W) are the row polynomials of this triangle. - _Peter Bala_, Jul 22 2012

%H G. C. Greubel, <a href="/A042977/b042977.txt">Table of n, a(n) for the first 75 rows, flattened</a>

%H A. F. Beardon, <a href="https://doi.org/10.1007/s40315-021-00398-1">Winding Numbers, Unwinding Numbers, and the Lambert W Function</a>, Computational Methods and Function Theory, 2021.

%H George C. Greubel, <a href="https://arxiv.org/abs/1805.06968">On Szasz-Mirakyan-Jain Operators preserving exponential functions</a>, arXiv:1805.06968 [math.CA], 2018.

%H G. A. Kalugin and D. J. Jeffrey, <a href="https://arxiv.org/abs/1011.5940">Unimodal sequences show that Lambert is Bernstein</a>, C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) pp. 50-56, 2011; arXiv:1011.5940 [math.CA], 2010.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>

%F E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - _Vladeta Jovovic_, Nov 19 2003

%F a(n) = B(n)*(1+x)^(2*n-1), where B(1)=1/(1+x) and for n>=2 B(n)=-n!*sum(m=1..n-1, (sum(j=1..m, (-1)^(m-j)*binomial(m,j)* sum(i=0..n, (j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!)))*B(m)/m!)/(1+x)^n). - _Vladimir Kruchinin_, Apr 07 2011

%F Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - _Peter Bala_, Jul 22 2012

%F T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - _Vladimir Kruchinin_, Feb 20 2018

%e Triangle begins:

%e .n\k.|....1....W...W^2...W^3...W^4

%e ==================================

%e ..1..|....1

%e ..2..|...-2...-1

%e ..3..|....9....8.....2

%e ..4..|..-64..-79...-36....-6

%e ..5..|..625..974...622...192....24

%e ...

%e T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.

%p # After Vladimir Kruchinin, for 0 <= m <= n:

%p T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # _Peter Luschny_, Feb 23 2018

%t Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm

%t Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* _Michael Somos_, Jun 07 2012 *)

%t T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* _Michael Somos_, Jun 07 2012 *)

%o (Maxima)

%o B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);

%o a(n):=B(n)*(1+x)^(2*n-1);

%o /* _Vladimir Kruchinin_, Apr 07 2011 */

%o (Maxima)

%o a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));

%o T(n, k):=coeff(ratsimp(a(n)), x, k);

%o for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));

%o /* _Vladimir Kruchinin_, Oct 09 2012 */

%o T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* _Vladimir Kruchinin_, Feb 20 2018 */

%Y Cf. A013703 (twice row sums), A000444, A000525, A064781, A064785, A064782.

%Y First column A000169, main diagonal A000142, first subdiagonal A052582.

%Y Cf. A054589.

%K sign,tabl,look

%O 0,2

%A _Wouter Meeussen_