%I #28 Dec 26 2023 06:37:36
%S 31,1923,119257,7395857,458662391,28444464099,1764015436529,
%T 109397401528897,6784402910228143,420742377835673763,
%U 26092811828722001449,1618175075758599763601,100352947508861907344711,6223500920625196855135683,385957410026271066925757057
%N Numerators of continued fraction convergents to sqrt(962).
%H Vincenzo Librandi, <a href="/A042860/b042860.txt">Table of n, a(n) for n = 0..200</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (62, 1).
%F From _Philippe Deléham_, Nov 23 2008: (Start)
%F a(n) = 62*a(n-1) + a(n-2), n > 1; a(0)=31, a(1)=1923.
%F G.f.: (31+x)/(1-62*x-x^2). (End)
%t Numerator[Convergents[Sqrt[962], 30]] (* _Vincenzo Librandi_, Dec 08 2013 *)
%Y Cf. A042861, A040930.
%K nonn,frac,easy
%O 0,1
%A _N. J. A. Sloane_
%E Additional term from _Colin Barker_, Dec 25 2013