login
A042715
Denominators of continued fraction convergents to sqrt(887).
2
1, 1, 4, 5, 9, 23, 676, 1375, 2051, 3426, 12329, 15755, 926119, 941874, 3751741, 4693615, 8445356, 21584327, 634390839, 1290366005, 1924756844, 3215122849, 11570125391, 14785248240, 869114523311, 883899771551, 3520813837964, 4404713609515, 7925527447479
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 938448, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^22 -x^21 +4*x^20 -5*x^19 +9*x^18 -23*x^17 +676*x^16 -1375*x^15 +2051*x^14 -3426*x^13 +12329*x^12 -15755*x^11 -12329*x^10 -3426*x^9 -2051*x^8 -1375*x^7 -676*x^6 -23*x^5 -9*x^4 -5*x^3 -4*x^2 -x -1) / (x^24 -938448*x^12 +1). - Colin Barker, Dec 22 2013
a(n) = 938448*a(n-12) - a(n-24). - Wesley Ivan Hurt, Apr 11 2022
MATHEMATICA
Denominator[Convergents[Sqrt[887], 30]] (* Vincenzo Librandi, Jan 27 2014 *)
CROSSREFS
Sequence in context: A153068 A075116 A041079 * A163868 A019148 A360699
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 22 2013
STATUS
approved