login
A041703
Denominators of continued fraction convergents to sqrt(371).
2
1, 3, 4, 19, 23, 88, 3367, 10189, 13556, 64413, 77969, 298320, 11414129, 34540707, 45954836, 218360051, 264314887, 1011304712, 38693893943, 117092986541, 155786880484, 740240508477, 896027388961, 3428322675360, 131172289052641, 396945189833283
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,3390,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^10-3*x^9+4*x^8-19*x^7+23*x^6-88*x^5-23*x^4-19*x^3-4*x^2-3*x-1) / (x^12-3390*x^6+1). - _Colin Barker_, Nov 22 2013
a(n) = 3390*a(n-6) - a(n-12) for n>11. - _Vincenzo Librandi_, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[371], 30]] (* _Vincenzo Librandi_, Dec 23 2013 *)
PROG
(Magma) I:=[1, 3, 4, 19, 23, 88, 3367, 10189, 13556, 64413, 77969, 298320]; [n le 12 select I[n] else 3390*Self(n-6)-Self(n-12): n in [1..40]]; // _Vincenzo Librandi_, Dec 23 2013
CROSSREFS
Sequence in context: A143150 A100340 A042175 * A036253 A212113 A196133
KEYWORD
nonn,frac,easy
AUTHOR
_N. J. A. Sloane_.
EXTENSIONS
More terms from _Colin Barker_, Nov 22 2013
STATUS
approved