login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041205
Denominators of continued fraction convergents to sqrt(113).
2
1, 1, 2, 3, 8, 19, 27, 46, 73, 1506, 1579, 3085, 4664, 12413, 29490, 41903, 71393, 113296, 2337313, 2450609, 4787922, 7238531, 19264984, 45768499, 65033483, 110801982, 175835465, 3627511282, 3803346747, 7430858029, 11234204776, 29899267581, 71032739938
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1552,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^16 -x^15 +2*x^14 -3*x^13 +8*x^12 -19*x^11 +27*x^10 -46*x^9 +73*x^8 +46*x^7 +27*x^6 +19*x^5 +8*x^4 +3*x^3 +2*x^2 +x +1) / (x^18 +1552*x^9 -1). - Colin Barker, Nov 14 2013
a(n) = 1552*a(n-9) + a(n-18). - Vincenzo Librandi, Dec 13 2013
MATHEMATICA
Denominator[Convergents[Sqrt[113], 40]] (* Harvey P. Dale, Feb 05 2012 *)
CoefficientList[Series[-(x^16 - x^15 + 2 x^14 - 3 x^13 + 8 x^12 - 19 x^11 + 27 x^10 - 46 x^9 + 73 x^8 + 46 x^7 + 27 x^6 + 19 x^5 + 8 x^4 + 3 x^3 + 2 x^2 + x + 1)/(x^18 + 1552 x^9 - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2013 *)
PROG
(Magma) I:=[1, 1, 2, 3, 8, 19, 27, 46, 73, 1506, 1579, 3085, 4664, 12413, 29490, 41903, 71393, 113296]; [n le 18 select I[n] else 1552*Self(n-9)+Self(n-18): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
CROSSREFS
Sequence in context: A240645 A273754 A242099 * A002356 A166302 A347736
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 14 2013
STATUS
approved