login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Continued fraction for sqrt(997).
1

%I #32 Dec 26 2023 07:44:25

%S 31,1,1,2,1,4,1,1,4,1,2,1,1,62,1,1,2,1,4,1,1,4,1,2,1,1,62,1,1,2,1,4,1,

%T 1,4,1,2,1,1,62,1,1,2,1,4,1,1,4,1,2,1,1,62,1,1,2,1,4,1,1,4,1,2,1,1,62,

%U 1,1,2,1,4,1,1,4,1,2,1,1,62,1,1,2,1,4,1,1,4,1,2,1

%N Continued fraction for sqrt(997).

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,1).

%F G.f.: -(x + 1)*(31*x^12 - 30*x^11 + 31*x^10 - 29*x^9 + 30*x^8 - 26*x^7 + 27*x^6 - 26*x^5 + 30*x^4 - 29*x^3 + 31*x^2 - 30*x + 31)/((x - 1)*(x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). - _Colin Barker_, Aug 11 2012

%p with(numtheory): Digits := 300: convert(evalf(sqrt(997)),confrac);

%t ContinuedFraction[Sqrt[997],120] (* _Harvey P. Dale_, Apr 19 2011 *)

%t PadRight[{31},120,{62,1,1,2,1,4,1,1,4,1,2,1,1}] (* _Harvey P. Dale_, Aug 18 2016 *)

%K nonn,cofr,easy

%O 0,1

%A _N. J. A. Sloane_