login
Continued fraction for sqrt(50) = 5*sqrt(2).
8

%I #31 Feb 16 2024 12:28:06

%S 7,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

%T 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

%U 14,14,14,14,14,14,14,14,14

%N Continued fraction for sqrt(50) = 5*sqrt(2).

%H Harry J. Smith, <a href="/A040042/b040042.txt">Table of n, a(n) for n = 0..20000</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F From _Elmo R. Oliveira_, Feb 07 2024: (Start)

%F a(n) = 14 for n >= 1.

%F G.f.: 7*(1+x)/(1-x).

%F E.g.f.: 14*exp(x) - 7.

%F a(n) = 7*A040000(n). (End)

%e 7.07106781186547524400844... = 7 + 1/(14 + 1/(14 + 1/(14 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 01 2009

%p Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):

%t ContinuedFraction[Sqrt[50],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 07 2011 *)

%o (PARI) { allocatemem(932245000); default(realprecision, 47000); x=contfrac(sqrt(50)); for (n=0, 20000, write("b040042.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 01 2009

%Y Cf. A010503 (decimal expansion), A041084/A041085 (convergents), A248275 (Egyptian fraction).

%Y Cf. A040000.

%K nonn,cofr,easy

%O 0,1

%A _N. J. A. Sloane_