%I #30 Nov 12 2023 06:05:07
%S 5,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,
%T 10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,
%U 1,10,1,10,1,10,1,10,1,10,1
%N Continued fraction for sqrt(35).
%H Harry J. Smith, <a href="/A040029/b040029.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F From _Amiram Eldar_, Nov 12 2023: (Start)
%F Multiplicative with a(2^e) = 10, and a(p^e) = 1 for an odd prime p.
%F Dirichlet g.f.: zeta(s) * (1 + 9/2^s). (End)
%e 5.9160797830996160425673282... = 5 + 1/(1 + 1/(10 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
%p Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
%t ContinuedFraction[Sqrt[35],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 06 2011 *)
%t PadRight[{5},120,{10,1}] (* _Harvey P. Dale_, Mar 23 2021 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 22000); x=contfrac(sqrt(35)); for (n=0, 20000, write("b040029.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 04 2009
%Y Cf. A010490 (decimal expansion).
%K nonn,cofr,easy,mult
%O 0,1
%A _N. J. A. Sloane_