login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions satisfying cn(1,5) < cn(2,5) + cn(3,5) and cn(4,5) < cn(2,5) + cn(3,5).
0

%I #6 Mar 30 2012 17:20:57

%S 0,1,1,1,2,3,5,7,9,15,18,25,33,47,66,81,102,135,180,240,291,363,462,

%T 599,761,929,1138,1421,1780,2214,2679,3261,3989,4902,5970,7195,8666,

%U 10475,12642,15202,18172,21736,25954,30961,36803

%N Number of partitions satisfying cn(1,5) < cn(2,5) + cn(3,5) and cn(4,5) < cn(2,5) + cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 1 < 2 + 3 and 4 < 2 + 3 (AAMBBp).

%K nonn

%O 1,5

%A _Olivier GĂ©rard_