login
Triangle read by rows: matrix 5th power of the Stirling-1 triangle A008275.
8

%I #24 Sep 18 2022 12:36:42

%S 1,-5,1,40,-15,1,-440,235,-30,1,6170,-4200,775,-50,1,-105315,86020,

%T -20475,1925,-75,1,2120610,-2001055,577570,-70525,4025,-105,1,

%U -49242470,52305780,-17609620,2623145,-195300,7490,-140,1,1296133195,-1520815230,581516560,-101595060,9264045,-464940,12810,-180,1

%N Triangle read by rows: matrix 5th power of the Stirling-1 triangle A008275.

%H Seiichi Manyama, <a href="/A039817/b039817.txt">Rows n = 1..140, flattened</a>

%F E.g.f. of k-th column: ((log(1+log(1+log(1+log(1+log(1+x))))))^k)/k!.

%e Triangle begins:

%e 1;

%e -5, 1;

%e 40, -15, 1;

%e -440, 235, -30, 1;

%e 6170, -4200, 775, -50, 1;

%e -105315, 86020, -20475, 1925, -75, 1;

%e ...

%t Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+Log[1+x]]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* _Stefano Spezia_, Sep 12 2022 *)

%Y Cf. A000359 (first column), A008275.

%Y Cf. A039813, A039814, A039815, A039816.

%K sign,tabl

%O 1,2

%A _Christian G. Bower_, Feb 15 1999