login
a(n)=Sum{d(i)*7^i: i=0,1,...,m}, where Sum{d(i)*4^i: i=0,1,...,m} is the base 4 representation of n.
4

%I #18 Mar 01 2014 09:44:04

%S 1,2,3,7,8,9,10,14,15,16,17,21,22,23,24,49,50,51,52,56,57,58,59,63,64,

%T 65,66,70,71,72,73,98,99,100,101,105,106,107,108,112,113,114,115,119,

%U 120,121,122,147,148,149,150,154,155,156,157

%N a(n)=Sum{d(i)*7^i: i=0,1,...,m}, where Sum{d(i)*4^i: i=0,1,...,m} is the base 4 representation of n.

%C A number k is a term of this sequence if and only if 7 divides neither C(2*k-1,k) nor C(2*k,k).

%H Clark Kimberling, <a href="/A037461/b037461.txt">Table of n, a(n) for n = 1..1000</a>

%e 39 = 3*1 + 1*4 + 2*4^2 -> 3*1 + 1*7 + 3*7^2 = 108, so a(39) = 108. - _Clark Kimberling_, Jul 30 2012

%t Table[FromDigits[RealDigits[n,4],7],{n,1,100}]

%t (* _Clark Kimberling_, Aug 02 2012 *)

%Y Cf. A050608.

%K nonn,base

%O 1,2

%A _Clark Kimberling_