%I #40 Nov 26 2020 03:17:43
%S 1,4,5,6,7,9,11,13,16,17,19,20,23,24,25,28,29,30,31,35,36,37,41,42,43,
%T 44,45,47,49,52,53,54,55,59,61,63,64,65,66,67,68,71,73,76,77,78,79,80,
%U 81,83,85,89,91,92,95,96,97,99,100,101,102,103,107
%N Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.
%C If n appears then 2n and 3n do not. - _Benoit Cloitre_, Jun 13 2002
%C Closed under multiplication. Each term is a product of a unique subset of {6} U A050376 \ {2,3}. - _Peter Munn_, Sep 14 2019
%H Robert Israel, <a href="/A036668/b036668.txt">Table of n, a(n) for n = 0..10000</a>
%H Don McDonald, <a href="https://groups.google.com/g/sci.math/c/o8pXfju6UQ4/m/sXwtqHfqTncJ">Obituary of Alan Robert Boyd</a>, posted to sci.math Jan 02 1999; <a href="http://nzsm.webcentre.co.nz/article1926.htm">alternative link</a>.
%F a(n) = 12/7 * n + O(log^2 n). - _Charles R Greathouse IV_, Sep 10 2015
%F {a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - _Peter Munn_, Sep 14 2019
%p N:= 1000: # to get all terms up to N
%p A:= {seq(2^i,i=0..ilog2(N))}:
%p Ae,Ao:= selectremove(issqr,A):
%p Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))),Ae):
%p Bo:= map(t -> seq(t*3*9^j,j=0..floor(log[9](N/(3*t)))),Ao):
%p B:= Be union Bo:
%p C1:= map(t -> seq(t*(6*i+1),i=0..floor((N/t -1)/6)),B):
%p C2:= map(t -> seq(t*(6*i+5),i=0..floor((N/t - 5)/6)),B):
%p A036668:= C1 union C2; # _Robert Israel_, May 09 2014
%t a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
%t Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
%t IntegerQ]]] &]], {150}]; a (* A036668 *)
%t (* _Peter J. C. Moses_, Apr 23 2019 *)
%o (PARI) twos(n) = {local(r,m);r=0;m=n;while(m%2==0,m=m/2;r++);r}
%o threes(n) = {local(r,m);r=0;m=n;while(m%3==0,m=m/3;r++);r}
%o isA036668(n) = (twos(n)+threes(n))%2==0 \\ _Michael B. Porter_, Mar 16 2010
%o (PARI) is(n)=(valuation(n,2)+valuation(n,3))%2==0 \\ _Charles R Greathouse IV_, Sep 10 2015
%o (PARI) list(lim)=my(v=List(),N);for(n=0,logint(lim\=1,3),N=if(n%2,2*3^n,3^n); while(N<=lim, forstep(k=N,lim,[4*N,2*N], listput(v,k)); N<<=2)); Set(v) \\ _Charles R Greathouse IV_, Sep 10 2015
%Y Cf. A003159, A007310, A014601, A036667, A050376, A052330, A325424 (complement).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)