OFFSET
1,2
COMMENTS
From Johannes W. Meijer, May 24 2009: (Start)
Absolute value of numerator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the absolute values of the numerators of the LS1[ -2*m,n=1] matrix coefficients of A160487 for m = 1, 2, .. ,.
(End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..275
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).
R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016.
Duane W. DeTemple, Shun-Hwa Wang, Half-integer approximations for the partial sums of harmonic series, J. Math. Anal. Applic. 160 (1991) 149-156
Simon Plouffe, On the values of the functions zeta and gamma, arXiv:1310.7195 [math.NT], 2013.
Eric Weisstein's World of Mathematics, Cosecant
Eric Weisstein's World of Mathematics, Riemann-Siegel Function
Wikipedia, Trigonometric functions
EXAMPLE
cosec x
= x^(-1) + 1/6*x + 7/360*x^3 + 31/15120*x^5 + ...
= x^(-1) + 1/6 * x/1! + 7/60 * x^3/3! + 31/126 * x^5/5! + ...
MAPLE
a:= n-> (m-> numer(coeff(series(csc(x), x, m+1), x, m)*m!))(2*n-1):
seq(a(n), n=1..20); # Alois P. Heinz, Jun 21 2018
MATHEMATICA
a[n_] := Abs[ Numerator[ (2^(2*n-1)-1) * BernoulliB[2*n]/n ] ]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, May 31 2013, after Johannes W. Meijer *)
PROG
(PARI) a(n) = abs(numerator((2^(2*n-1)-1)*bernfrac(2*n)/n)); \\ Michel Marcus, Mar 01 2015
CROSSREFS
KEYWORD
nonn,frac,easy,changed
AUTHOR
EXTENSIONS
Title corrected and offset changed by Johannes W. Meijer, May 21 2009
STATUS
approved