%I #19 Aug 21 2018 08:23:16
%S 1,54,1458,26262,355266,3852630,34910514,272061558,1862598402,
%T 11387193846,62980925490,318495883734,1485715581378,6440930470422,
%U 26117059455666,99603553781430,359014421036034,1228284237803958
%N Coordination sequence for 27-dimensional cubic lattice.
%H Seiichi Manyama, <a href="/A035722/b035722.txt">Table of n, a(n) for n = 0..10000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (27, -351, 2925, -17550, 80730, -296010, 888030, -2220075, 4686825, -8436285, 13037895, -17383860, 20058300, -20058300, 17383860, -13037895, 8436285, -4686825, 2220075, -888030, 296010, -80730, 17550, -2925, 351, -27, 1).
%F G.f.: ((1+x)/(1-x))^27.
%F n*a(n) = 54*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 21 2018
%K nonn,easy
%O 0,2
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 25 1998