login
A035300
Expansion of Sum_{n>=0} (q^n / Product_{k=1..n+4} (1 - q^k)).
9
1, 2, 4, 7, 12, 18, 28, 40, 58, 80, 111, 149, 201, 264, 348, 450, 583, 744, 950, 1199, 1514, 1893, 2366, 2935, 3638, 4480, 5513, 6746, 8247, 10035, 12196, 14763, 17850, 21504, 25875, 31038, 37184, 44422
OFFSET
0,2
FORMULA
a(n) = A000041(n+4) - round((n+7)^2/12). - Vladeta Jovovic, Jun 18 2003
MAPLE
ZL :=[S, {S = Set(Cycle(Z), 3 < card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=4..41); # Zerinvary Lajos, Mar 25 2008
B:=[S, {S = Set(Sequence(Z, 1 <= card), card >=4)}, unlabelled]: seq(combstruct[count](B, size=n), n=4..41); # Zerinvary Lajos, Mar 21 2009
CROSSREFS
Sequence in context: A003318 A329398 A353150 * A035296 A230118 A105807
KEYWORD
nonn
STATUS
approved