%I #24 Jun 25 2023 21:03:50
%S 1,1,1,2,2,2,2,4,4,2,3,6,10,6,3,3,9,16,16,9,3,4,12,28,32,28,12,4,4,16,
%T 40,60,60,40,16,4,5,20,60,100,126,100,60,20,5,5,25,80,160,226,226,160,
%U 80,25,5,6,30,110,240,396,452,396,240,110,30,6,6,36,140,350,636,848
%N Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).
%C Same as A034852, but omitting the border of 0's.
%D S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
%H Reinhard Zumkeller, <a href="/A034877/b034877.txt">Rows n=0..25 of triangle, flattened</a>
%H Johann Cigler, <a href="https://arxiv.org/abs/1711.03340">Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle</a>, arXiv:1711.03340 [math.CO], 2017.
%H Johann Cigler, <a href="https://homepage.univie.ac.at/johann.cigler/preprints/losanitsch3.pdf">Some Pascal-like triangles</a>, 2018.
%H S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
%H N. J. A. Sloane, <a href="/classic.html#LOSS">Classic Sequences</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lozani%C4%87%27s_triangle">Losanitsch's triangle</a>
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 2, 2;
%e 2, 4, 4, 2;
%e 3, 6, 10, 6, 3;
%e 3, 9, 16, 16, 9, 3;
%e ...
%o (Haskell)
%o a034877 n k = a034877_tabl !! n !! k
%o a034877_row n = a034877_tabl !! n
%o a034877_tabl = map (init . tail) $ drop 2 a034852_tabl
%o -- _Reinhard Zumkeller_, Dec 16 2013
%Y Cf. A007318, A034851, A034852.
%Y Row sums are essentially A032085. Central column is A032095.
%K nonn,tabl,easy
%O 0,4
%A _N. J. A. Sloane_.
%E More terms from _James A. Sellers_, May 04 2000