OFFSET
0,1
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
Index entries for linear recurrences with constant coefficients, signature (63,-1302,11160,-41664,64512,-32768).
FORMULA
G.f.: -3*(21504*x^5-27776*x^4+11160*x^3-1736*x^2+105*x-2) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)*(32*x-1)). - Colin Barker, Apr 20 2014
a(n) = (2^(6*n) - 1)/( 2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 63*x + 2667*x^2 + 97155*x^3 + ... is the o.g.f. for the 5th subdiagonal of triangle A022166, essentially A006110. - Peter Bala, Apr 07 2015
a(n) = 1 + 2^n + 4^n + 8^n + 16^n + 32^n for n>=0. - Karl V. Keller, Jr., Feb 02 2021
MATHEMATICA
Total[#^Range[0, 15]&/@Divisors[32]] (* Vincenzo Librandi, Apr 17 2014 *)
LinearRecurrence[{63, -1302, 11160, -41664, 64512, -32768}, {6, 63, 1365, 37449, 1118481, 34636833}, 20] (* Harvey P. Dale, Jan 10 2015 *)
PROG
(Sage) [sigma(32, n)for n in range(0, 15)] # Zerinvary Lajos, Jun 04 2009
(Magma) [DivisorSigma(n, 32): n in [0..15]]; // Vincenzo Librandi, Apr 17 2014
(PARI) a(n)=(64^n-1)/(2^n-1) \\ Charles R Greathouse IV, Oct 07 2015
(Python) print([1+2**n+4**n+8**n+16**n+32**n for n in range(15)]) # Karl V. Keller, Jr., Feb 02 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved